Saturday, 10 February 2018

Feedback on low energy building course

There is a well established process for running projects, and many other human endeavors, with acronyms like PDCA, standing for plan, do, check and act. Or adjust. Or again. Whatever the last A stands for, equally well established is the habit of forgetting that last bit. People love the planning, they enjoying the doing, they reluctantly dabble with checking, and have lost interest when it comes to strategic changes. The next time around, they will do things the same way, perhaps with a little less emphasis on the bits they don't like doing. But those little tweaks and readjustments are often the difference between long-term success and short-term failure. 

So this is me checking and adjusting my syllabus for the low energy building course, and I'm actually trying to use the student feedback in the same way feedback is used in control engineering rather than the frantic rush to turn down the volume you get in amateur sound engineering.

Feedback came from two directions: one in the form of paper questionnaires handed down from the university and handed out in class. For the most part students just pencil in the lozenges somewhere between strongly agree and strongly disagree, but I encourage them to fill in the spaces for written comments. In one class I told them they should write something about the paper questionnaires being a waste of time, and the university should administer them online. Four of the students did write something like that, and while I was pleased, it shows that students in the classroom will just write what the teacher tells them to, which is just one of the reasons paper questionnaires should not be completed in class. 

That was a different class though. In the low energy building class, their comments mostly just
reported that they had learnt about low energy building. Important knowledge about low energy building. Knowledge about the importance of low energy building. A couple just said they learnt about buildings, which is perhaps an even better response. One person said it was important to think about economic issues as well. Another valued the fact that the lesson was in English. Most of these comments (70%) were in Japanese, the same language as the university questionnaire, but nobody commented here that I should speak more Japanese, or that the class should not be in English. 

The other formal avenue for feedback was in the final questions, where I asked them these two questions:

  • What was missing from the course? What other topics should have been covered, or what topics should have been covered in more depth?
  • How can the course be improved? How can I make it better for next year? 
I know the pedantic grammarian will find four questions there, but I rephrased each question to make it clear what I wanted to know, and also because the length of answer is often proportional to the length of the question since the human tendency for mimicry is much stronger than the tendency for following instructions. Almost all of the students (90%) answered these English language questions in English.

Six of them mentioned language in their suggestions for improvements. Three suggested I should speak more Japanese, one saying an all-English class was a bit difficult. One suggested adding definitions in Japanese on the slides. Two wanted the students to speak more English, one of them suggesting students should only speak English in class, the other saying her English had become more fluent and that I should continue to English. 

Conclusion on language: Using theories to determine thermal comfort in buildings, it seems the language temperature of the room is OK, judging by the relatively small number of people who are too hot or too cold. Adding definitions in Japanese to the slides is a great idea that I need to do more.

I was worried that I'm doing too many calculations, but it looks more like the opposite. Seven people mentioned calculations, mostly wanting more time to do calculations, or wanting me to spend more time on them. They mentioned U-values, windows, compound insulation and calculating whole-house U-values.

In terms of course content, four wanted more case studies, one asking about low energy buildings in Matsumoto, and two wanting more information about low energy buildings in other countries or about international differences.

Three wanted to know more about insulation materials.

Two mentioned cooling, which I know is an important topic that I should have covered. I just realised that lesson 5 started off as a lesson on cooling, but now seems to focus mostly on comfort. I think the windows from the previous lesson may have spilled into it. Also I had prepared a full lesson on cooling, which I then did not teach.

Two wanted to know about the latest technology, one asking about the latest building techniques, the other giving the example of dye sensitized solar cells.

Other content suggestions were for Passivhaus in more depth, hydroelectricity, window frames, and large scale energy savings, for example at the city scale.

​Other comments were ​more about the delivery and presentation of the class.

Four people gave positive comments on the course​:​ that it was great, perfect, nice, or had a good balance.

Three people gave somewhat critical comments: I should make my slides better, I should ask what students want to know, and I should introduce an expert on low energy building to the class.
Actually the last one is probably not critical, and I should take it as a positive suggestion, and in fact a really good idea. They may mean that I should be talking about low energy building experts rather than physically introducing one in the classroom. Just because that's how I would have written "you're crap" doesn't mean that is what they meant when they wrote it. While it's great that so many of them are writing in English, there is more chance for ambiguity when they are writing in a foreign language.

(I didn't have this question)
One student suggested that the range of questions in the online tests was different to the content of the class.

One person suggested I should always give measurements for the sizes of windows and rooms. I think this is something I realised half way through the semester, and something that made me think I would get requests for fewer calculations. I tend to give the students real world problems, and hope that they will be able to grasp the problem, identify what information they need to solve the problem, get exact values for the information where they can, and estimate where they don't have exact answers. This is a chain and is only as strong as its weakest link, and most of the students will fall down at some point. What I need to do is to break problems down in a much more systematic way, and give them several chances to practice each step before putting the steps together. I need to carry on giving them guesstimation problems, for example estimating the dimensions of walls or windows, but not at the same time as giving them thermodynamics problems.

Another wanted a list of formulas which we learn in class, which would be a really good idea. I should produce a low energy cheat sheet!

Another suggested that presentations should all be done in one lesson. Interestingly this was from one of the students in the group that went up to speak first, who had specifically said that they wanted to give their presentations in that lesson, a week before all the other presentations.

Finally, there was a comment that I should "distinguish between good and weak students in good balance". I'm not sure what that means. Perhaps that I should be making sure I'm teaching the students at the right level. Perhaps it means they should be working together in groups based on their level.

Now it's back to the drawing board for next year's class! The syllabus needs to be uploaded next week.