There's an interesting story here in all about circuits about new battery technology that could double the density. In a lot of applications, battery weight is critical. Remote control helicopters is one example, since the power inside the battery must be used to lift the battery itself. These first appeared in the mid 1990s with nickel-cadmium batteries, but later became popular as toys when lithium-ion polymer batteries provided sufficient current for the weight. The development in battery technology marches on, and now a solar-powered plane has flown around the world. It takes a while to find information about the batteries on the Solar Impulse website, but without the four lithium polymer batteries, which make up a quarter of the plane's weight, it would have struggled to stay up through the nights, or get through any clouds on the way to or from the stratosphere.
Anyway, one of the reasons why lithium is a more popular battery choice than nickel-cadmium is that it's lighter. Anyone who has seen the periodic table knows that lithium comes in at number three, right after hydrogen and helium. Electricity is basically stored in the outer electron of each atom, so the light weight of the lithium atom means more free electrons per weight. The first lithium batteries were made with mixtures of other metals, like iron or manganese. In lithium-ion batteries, lithium atoms freed from their out electrons float through the electrolyte from one side of the battery to the other. Once these were put in plastic cases, they started to be called lithium polymer batteries. In its more technical meaning, lithium-ion polymer batteries have a polymer electrolyte.
Image from of Business Wire. |
These batteries are still using the ions to carry the charge rather than the electrons. Looking at the relative size of the electrons and ions, this is a bit like playing tennis where the players have to go back and forth over the net, rather than the ball. Battery technology is progressing, but still has a long way to go!
You can see an infographic of how other kinds of batteries work here.